References | 1. Mohanpuria, P., Rana, N., and Yadav, S.: Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res., 10, 507-517 (2008).
https://doi.org/10.1007/s11051-007-9275-x
2. Tam, J.M., Tam, J.O., Murthy, A. et al.: Controlled Assembly of Biodegradable Plasmonic Nanoclusters for Near-Infrared Imaging and Therapeutic Applications. ACS Nano, 4, 2178-2184 (2010).
https://doi.org/10.1021/nn9015746
3. Burlaka, O.M., Pirko, Ya.V., Yemets, A.I., and Blume, Ya. B.: «Green» Synthesis of Metal Nanoparticles: Capacity of Biological Systems and Prospects for Development. Nanostructure Material Science, 4, 89-103 (2012) (in Ukrainian).
4. Sarwat, B.R., Ghaderi, S., Keshtgar, M., and Seifalian, A.M.: Semiconductor Quantum Dots as Fluorescent Probes for In Vitro and In Vivo Bio-Molecular and Cellular Imaging. Nano Rev., 1, 1-15 (2010).
5. Singh, S.H., Bozhilov, K., Mulchandani, A. et al.: Biologically Programmed Synthesis of Core-Shell CdSe/ZnS Nanocrystals. Chem. Commun., 46, 1473-1475 (2010).
https://doi.org/10.1039/b920688d
6. Michalet, X., Pinaud, F.F., and Bentolila, L.A.: Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science, 307, 5709, 538—544 (2005).
https://doi.org/10.1126/science.1104274
7. Dahl, J.A., Maddux, B.L.S., and Hutchison, J.E.: Toward Greener Nanosynthesis. Chem. Rev., 107, 2228-2269 (2007).
https://doi.org/10.1021/cr050943k
8. Iravani, S.: Green Synthesis of Metal Nanoparticles Using Plants. Green Chem., 13, 2638-2650 (2011).
https://doi.org/10.1039/c1gc15386b
9. Krutiakov, Yu.A., Kudrinski, A.A., Olenin, A.Yu., and Lisichkin, G.V.: Synthesis and Properties of Silver Nanoparticles: Achievement and Prospects. Uspekhi Khimii, 77, 3, 242-269 (2008) (in Russian).
10. Darroudi, M., Ahmad, M.B., Zamiri, R. et al.: Time-Dependent Effect in Green Synthesis of Silver Nanoparticles. Int. J. Nanomedicine, 6, 677-681 (2011).
https://doi.org/10.2147/IJN.S17669
11. Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Brus, L.E. et al.: Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals. Nature, 383, 802-804 (1996).
https://doi.org/10.1038/383802a0
12. Gaponik, N., Talapin, D.V., Rogach, A.L. et al.: Thiol-Capping of CdTe Nanocrystals: an Alternative to Organometallic Synthetic Routes. J. Phys. Chem., 106, 7177-7185 (2002).
https://doi.org/10.1021/jp025541k
13. Shankar, S.S., Rai, A., Ahmad, A., and Sastry, M.: Rapid Synthesis of Au, Ag, and Bimetallic Au Core—Ag Shell Manoparticles Using Neem (Azadirachta indica) Leaf Broth. J. Coll. Interface Sci., 275, 496-502 (2004).
https://doi.org/10.1016/j.jcis.2004.03.003
14. Song, J.Y. and Kim, B.S.: Rapid Biological Synthesis of Silver Nanoparticles Using Plant Leaf Extracts. Bioproc. Biosyst. Eng., 32, 79—84 (2009).
https://doi.org/10.1007/s00449-008-0224-6
15. Lim, J.-S., Kim, S.-M., Lee, S.-Y. et al.: Formation of Au/Pd Alloy Nanoparticles on TMV. J. Nanomater., 6, 620505-620511 (2010).
https://doi.org/10.1155/2010/620505
16. Nair, B. and Pradeep, T.: Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Cryst. Growth. Des., 2, 293-298 (2002).
https://doi.org/10.1021/cg0255164
17. Kannan, N. and Subbalaxmi, S.: Green Synthesis of Silver Nanoparticles Using Bacillus Subtillus IA751 and Its Antimicrobial Activity. Res. J. Nanosci. Nanotechnol., 1, 2, 94-97 (2011).
https://doi.org/10.3923/rjnn.2011.87.94
18. Manonmani, V. and Vimala, J.: Biosynthesis of Ag Nanoparticles for the Detection of Pathogenic Bacteria in Food. 2011 Int. Conf. Innovat., Management Service IPEDR., 14, 311 (2011).
19. Mousavi, R.A, Akhavan, S.A., and Fazeli, M.R.: Biosynthesis, Purification and Characterization of Cadmium Sulfide Nanoparticles Using Enterobacteriaceae and Their Application. Nanomater. Appl. Proper., 1, 1, 1-5 (2012).
20. Dameron, C.T., Reese, R.N., and Mehra, R.K.: Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites. Nature, 338, 13, 596-597 (1989).
https://doi.org/10.1038/338596a0
21. Ahmad, A., Senapati, S., Khan, M.I. et al.: Intracellular Synthesis of Gold Nanoparticles by a Novel Alkalotolerant Actinomycete, Rhodococcus sp. Nanotechnol., 14, 824 — 828 (2003).
https://doi.org/10.1088/0957-4484/14/7/323
22. Ahmad, A., Senapati, S., Khan, M.I. et al.: Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir, 19, 3550-3553 (2003).
https://doi.org/10.1021/la026772l
23. Bansal, V., Poddar, P., Ahmad, A., and Sastry, M.: Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem. Soc., 128, 11958-11963 (2006).
https://doi.org/10.1021/ja063011m
24. Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V. et al.: Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus flavus. Mat. Lett., 61, 1413-1418 (2007).
https://doi.org/10.1016/j.matlet.2006.07.042
25. Kumar, S.A., Ayoobul, A.A., Absar, A., and Khan, M.I.: Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium oxysporum. J. Biomed. Nanotechnol., 3, 190-194 (2007).
https://doi.org/10.1166/jbn.2007.027
26. Arjunan, K., Murugan, K., Rejeeth, C. et al.: Green Synthesis of Silver Nanoparticles for the control of Mosquito Vectors of Malaria, Filariasis, and Dengue. Vector Borne Zoonotic Dis., 12, 3, 262-269 (2012).
https://doi.org/10.1089/vbz.2011.0661
27. Jayaseelan, C., Rahuman, A.A., Rajakumar, G. et al.: Synthesis of Pediculocidal and Larvicidal Silver Nanoparticles by Leaf Extract from Heartleaf Moonseed Plant, Tinospora cordifolia Miers. Parasitol. Res., 109, 185-194 (2011).
https://doi.org/10.1007/s00436-010-2242-y
28. Guidelli, E.J., Ramos, A.P., Zaniquelli, M.E.D., and Baffa, O.: Green Synthesis of Colloidal Silver Nanoparticles Using Natural Rubber Latex Extracted from Hevea brasiliensis. Spectrochimica Acta A, 82, 140-145 (2011).
https://doi.org/10.1016/j.saa.2011.07.024
29. Kaviya, S., Santhanalakshmi, J., and Viswanathan, B.: Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-sorbitol: Study of Antibacterial Activity. J. Nanotechnol. (2011); http://www.hindawi.com/journals/jnt/2011/152970.
30. Mallikarjuna, K., Narasimha, G., Dillip, G.R. et al.: Green Synthesis of Silver Nanoparticles Using Ocimum Leaf Extract and Characterization. Digest J. Nanomater. Biostruct., 6, 1, 181-186 (2011).
31. Marchiol, L.: Synthesis of Metal Nanoparticles in Living Plants. Italian J. Agron., 7, 3, 274-282 (2012).
https://doi.org/10.4081/ija.2012.e37
32. Anshup, A., Venkataraman, J.S., Subramaniam, C. et al.: Growth of Gold Nanoparticles in Human Cells. Langmuir, 21, 11562-11567 (2005).
https://doi.org/10.1021/la0519249
33. Satyavani, K., Ramanathan, T., and Gurudeeban, S.: Plant Mediated Synthesis of Biomedical Silver Nanoparticles by Using Leaf Extract of Citrullus colocynthis. Res. J. Nanosci. Nanotechnol., 1, 2, 95-101 (2011).
https://doi.org/10.3923/rjnn.2011.95.101
34. Virkutyte, J. and Varma, R.S.: Green Synthesis of Metal Nanoparticles: Biodegradable Polymers and Enzymes in Stabilization and Surface Functionalization. Chem. Sci., 2, 837-846 (2011).
https://doi.org/10.1039/C0SC00338G
35. Shukla, R., Nune, S.K., Chanda, N. et al.: Soybeans as a Phytochemical Reservoir for the Production and Stabilization of Biocompatible Gold Nanoparticles. Small., 4, 9, 1425-1436 (2008).
https://doi.org/10.1002/smll.200800525
36. Mukherjee, P., Senapati, S., Mandal, D. et al.: Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. Chem. Bio. Chem., 3, 461-463 (2002).
https://doi.org/10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-X
37. Shahverdi, A., Minaeian, S., Shahverdi, H.R. et al.: Rapid Synthesis of Silver Nanoparticles Using Culture Supernatants of Enterobacteria: a Novel Biological Approach. Proc. Biochem., 42, 919-923 (2007).
https://doi.org/10.1016/j.procbio.2007.02.005
38. Xie, J., Lee, J.Y., Wang, D.I.C., and Ting, Y.P.: Silver Nanoplates: from Biological to Biomimetic Synthesis. ACS Nano, 1, 429-439 (2007).
https://doi.org/10.1021/nn7000883
39. Li, S., Shen, Y., Xie, A. et al.: Green Synthesis of Silver Nanoparticles Using Capsicum annuum L. extract. Green Chem., 9, 852-858 (2007).
https://doi.org/10.1039/b615357g
40. Li, X., Xu, H., Chen, Zh-Sh., and Chen, G.: Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater., 1-16 (2011).
https://doi.org/10.1155/2011/270974
41. Pomogailo, A.D., and Kestelman, V.N. (2005). Metallopolymer Nanocomposites. Springer: Berlin, Heidelberg, New York.
42. He, F., Zhao, D., Liu, J., and Roberts, C.B.: Stabilization of Fe-Pd Bimetallic Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Degradation of TCE in Water. Ind. Eng. Chem. Res., 46, 29-34 (2007).
https://doi.org/10.1021/ie0610896
43. Blume, Ya.B., Pirko, Ya.V., Danilenko, I.A. et al.: Technique for Obtaining Silver and Gold Nanoparticles. Patent of Ukraine for Utility Model no. 86778 of 10.01.2014 (in Ukrainian).
44. Pirko, Ya., Danylenko, I., Kolomys, O. et al.: Phytochemical Mediated Synthesis of Silver and Gold Nanoparticles. Curr. Pharm. Biotechnol., 13, 15, 85 (2012).
45. Pirko, Ya., Danylenko, I., Kolomys, O. et al.: Synthesis of Silver Nanoparticles Using Phytoextracts from Higher Plants. Chemistry-2011: 10th Int. Conf. Lithuanian Chemists, 135 (2011).
46. Danilenko, I.A., Botvinko, A.V., Pirko, Ya.V. et al.: Synthesis and Antibacterial Properties of Silver Nanoparticles Synthesized Using Phytoextracts. Nanosize Systems: Structure, Properties, and Technologies, 472 (2013) (in Ukrainian).
47. Borova, M.M., Naumenko, A.P., Pirko, Ya.V., Krupodiorova, T.A., Yemets, A.I., and Blume, Ya.B.: Obtaining CdS Quantum Dots Using Pleurotus ostreatus. Reports of the NAS of Ukraine, 2, 153-159 (2014) (in Ukrainian).
https://doi.org/10.15407/dopovidi2014.02.153
48. Borova, M.M., Naumenko, A.P., Yemets, A.I., and Blume, Ya.B.: Stability of CdS Quantum Dots Synthesized Using Escherichia coli Bacterium. Reports of the NAS of Ukraine, 7, 145-151 (2014) (in Ukrainian).
https://doi.org/10.15407/dopovidi2014.07.145
49. Borovaya, M.N., Naumenko, A.P., Matvieieva, N.A. et al.: Biosynthesis of Luminescent CdS Quantum Dots Using Plant Hairy Root Culture. Nanoscale Res. Lett., 9 (2014).
https://doi.org/10.1186/1556-276X-9-686
50. Martínez-Castañón, G.A, Loyola-Rodríguez, J.P, and Reyes-Macías, J.F.: Synthesis and Optical Properties of Functionalized CdS Nanoparticles with Different Sizes. Superficies y vacío, 23, 4, 1-4 (2010).
51. Asaula, V.N., Mirnaia, T.A., and Yaremchuk, G.G.: Nanostructured Liquid Crystal Systems of Metal Alcanoates with CdS Nanoparticles. Nanosystems, Nanomaterials, and Nanotechnologies, 10, 1, 193-201 (2012) (in Russian).
52. Rossetti, R, Ellison, J.L, Gibson, J.M, and Brus, L.E.: Size Effects in the Excited Electronic States of Small Colloidal CdS Crystallites. J. Chem. Phys., 80, 9, 4464-4469 (1984).
https://doi.org/10.1063/1.447228
53. Sweeney, R.Y., Mao, C., and Gao, X.: Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chem. Biol., 11, 11, 1553-1559 (2004).
https://doi.org/10.1016/j.chembiol.2004.08.022
|