ISSN 2409-9066 (English ed. Print)
Deintelligent Parallel Computer with Intel Xeon Phi Processors of New Generation
Title | Deintelligent Parallel Computer with Intel Xeon Phi Processors of New Generation |
Publication Type | Journal Article |
Year of Publication | 2018 |
Authors | Khimich, OM, Mova, VI, Nikolaichuk, ОO, Popov, OV, Chistjakova, TV, Tulchinsky, VG |
Short Title | Sci. innov. |
DOI | 10.15407/scine14.06.061 |
Volume | 14 |
Issue | 6 |
Section | Research and Engineering Innovative Projects of the National Academy of Sciences of Ukraine |
Pagination | 61-72 |
Language | English |
Abstract | Introduction. Mathematical modeling with large volumes of data is an actual innovation problem in various spheres of human activity. For their effective computer research, it is necessary to use powerful computers and high-performance software. |
Keywords | approximate data, computational mathematics, Intel Xeon Phi processor, mathematical modeling, parallel computer |
References | 1. TOP 500.
URL: http://www.TOP500.org/ (Last accessed: 24.04 2018). 2. Wilkinson, J. H. (1963). Rounding Errors in Algebraic Processes. London: H.W. Staat. Off.
3. Wilkinson, J. H., Reinsh, K. (1976). Algorithm Reference in Algol. Linear algebra. Moskva: Mechanical engineering [in Russian].
4. Voevodin, V. V. (1969). Errors of rounding and stability in direct methods of linear algebra. Moskva: Izd. Computer Center of Moscow State University [in Russian].
5. Molchanov, I. N. (1987). Machinye metody reshenija prikladnyh sadach. Algebra, priblizhenie funkcij. Kyiv: Naukova dumka [in Russian].
6. Khimich, A. N. (1996). Оtsеnki vozmushchеnii dlja rеshеnija zаdаchi naimen'shikh kvadratov. Kibernetika i sistemnyi analiz, 3, 95–102 [in Russian].
7. Khimich, A. N. (2002). Оtsеnki pоlnоi pogreshnоsti reshеnija sistem lineinykh аlgebraichеskikh uravnenii dlja matrits proizvol'nogo ранга. Komp'jutеrnaja matematika, 2, 41–49 [in Russian].
8. Khimich, A. N., Voitsekhоvsky, С. А., Brusnikin, V. N. (2004). О dostovernosti lineinykh matematicheskikh modelei s priblizhonno sadannymi iskhodnymi dannymi. Matematicheskie mashiny i sistemy, 3, 54–62 [in Russian].
9. Forsyth, J., Malcolm, M., Mouler, K. (1980). Machine methods of mathematical calculations. Moskva: Mir [in Russian].
10. Chesbrough, H. (2007). Ореn Innovation: The New Imperative for Creating and Profiting from Technology. Moskva: Pokolenie [in Russian].
11. Tarnavsky, G. A., Aliev, A. V. (2007). Mathematical modeling: main segments, their features and problems. Computational methods and programming, 8, 297–310 [in Russian].
12. Ilyin, V. P. (2014). On sone "over-cloud" problems of mathematical modeling. Bulletin of the South Ural State University. Series "Computational Mathematics and Software Engineering", 3(1), 68-79 [in Russian].
13. Khimich, A. N., Molchanov, I. N., Mova, V. І., Nikolaichuk, О. O., Popov, A. V., Chistjakova, T. V., Jakovlev, M. F., Tulchinsky, V. G., Yushchenko, R. А. (2016). Intelligent Personal Supercomputer for Solving Scientific and Technical Problems. Sci. innov., 12(5), 17-31 [in Ukrainian].
14. IntelXeon Phi.
URL: https://www.intel.com/content/wwilus/en/products/processors/xeon-phi/ (Last accessed: 20.04 2018). 15. Khimich, A. N., Molchanov, I. N., Mowa, V. I., Perevozchikova, O. L., Stryuchenko, V. A., Popov, A. V., Chistyakova, Т. V., Yakovlev, M. F., Gerasimova, T. A., Zubatenko, V. S., Gromovsky, A. V., Nesterenko, A. N., Polyanko, V. V., Rudich, O. V., Yushchenko, R. A., Nikolaychuk, A. A., Gorodetsky, A. S., Slobodian, Ya. E., Geraimovich, Yu. D. (2007). Chislennoe programmnoe obespechenie intellektual'nogo MIMD-komp'jutera Inparcom. Kyiv: Naukova dumka [in Russian].
16. Khimich, A. N., Popov, A. V., Chistyakova, T. V., Rudich, O. V., Chistyakov, A. V. (2017). The intelligente system for the investigating and solving of eigenvalue problem on parallel computers with processors Intel Xeon Phi. Scientific and theoretical journal «Artificial intelligence», 2, 119–127 [in Ukrainian].
17. HC27.25.710–Knights–Landing–Sodani–Intel_copy.pdf.
URL:https://www.hotchips.org/ (Last accessed: 22.04 2018). 18. Khimich, A. N., Molchanov, I. N., Popov, A. V., Chistjakova, T. V., Jakovlev, M. F. (2008). Parallel'nye algoritmy reshenija zadach vychislitel'noi matematiki. Kyiv: Naukova dumka [in Russian].
19. Chistyakov, A. V. (2017, December). On the peculiarities of solving the algebraic problem of eigenvalues on parallel computers with Intel Xeon Phi processors. International Scientific Conference “Modern Computer Science: Problems, Achievements and Prospects of Development” devoted to the 60th anniversary of V.M. Glushkov Institute of Cybernetics of National Academy of Sciences of Ukraine, Кyiv [in Ukrainian].
20. Voevodin, V. V., Voevodin, Vl. V. (2002). Parallel computations. Sankt-Petersburg: BHV-Petersburg [in Russian].
21. OpenMP. V. 4.0.
URL: http://www.openmp.org/mp-documents/OpenMP4.0.pdf/ (Last accessed: 24.04 2017). 22. Intel Math Kernel Library (MKL). Reference Manual.
URL: https://software.intel.com/en-us/articles/mkl-reference-manual/ (Last accessed: 20.04 2017). 23. Gorodetsky, A. S., Evzerov, I. D. (2007). Computer models of constructions, Kyiv: FACT [in Russian].
24. Khimich, A. N., Poljanko, V. V., Popov, A. V., Rudich, O. V. (2008). Reshenie zadach rascheta prochnosti konstruktsii na MIMD-kompjutere. Iskusstvennyi intellekt, 3, 750–760.
25. Velikoivanenko, E. A., Milenin, A. S., Popov, A. V., Sidoruk, V. A., Khimich, A. N. (2014). Metody i tekhnologii paralel'nykh vychislenii dlja matematicheskogo modelirovanija naprjazhonno-deformirovannogo sostojanija konstruktsii s uchetom vjazkogo razrushenija. Problemy upravlenija i informatiki, Journal of Automation and Information Sciences, 6, 42–52 [in Russian].
26. Guz, A. N., Dekret, V. A. (2015). Model of short fibers in the theory of stability of composites. Germany, Saarbrucken: LAP.
27. Decret, V. A., Zelensky, V. S., Bystrov, V. M. (2008). Numerical study of the stability of a laminated composite material under uniaxial compression of a filler. Kyiv: Naukova dumka [in Russian].
28. Khimich, A. N., Popov, A. V., Chistyakov, O. V. (2017). Hybrid algorithms for solving the algfebraic eigenvalue problem with sparse matrices. Cybernetics and Systems Analysis, 53(6), 132–146.
|