Enrichment of Edible Mushroom Biomass with Compounds of Germanium, Selenium, and Molybdenum

TitleEnrichment of Edible Mushroom Biomass with Compounds of Germanium, Selenium, and Molybdenum
Publication TypeJournal Article
Year of Publication2019
AuthorsGrodzynska, GA, Samchuk, AI, Nebesny, VB
Short TitleSci. innov.
DOI10.15407/scine15.05.078
Volume15
Issue5
SectionResearch and Engineering Innovative Projects of the National Academy of Sciences of Ukraine
Pagination78-83
LanguageEnglish
Abstract
Introduction. Today, it is well known that mushrooms (pileated fungi, macromycetes) are not only a traditional food, but also an inexhaustible source of substances that have a wide range of pharmacological applications. Some species of mushrooms are considered a source of physiologically important, so-called essential elements, such as Cu, Fe, Zn, Cr, Se, Mo, Mn, etc.
Problem Statement. The biotechnological approaches aiming at enriching the essential elements of the mineral composition of mushroom biomass that is cultivated on a liquid nutrient medium and the fruit bodies of valuable edible species cultivated in the surface culture are relevant and promising, given the mineral composition of macromycetes is rather specific and characterized by a certain selectivity of the accumulation of individual elements from soils / substrates (species-specificity of accumulation). Enrichment with essential elements potentially has to increase the medicinal properties, biological activity, and nutritional value of such mushroom supplements.
Purpose. To identify the bio-accumulative ability of Pleurotus ostreatus (Jacq.) P. Kumm. and P. eryngii (DC.) Quél. mycelial biomass with the compounds of Ge, Se, and Mo.
Materials and Methods. The content of Ge, Se, and Mo in the mycelial biomass of three strains of the Pleurotus genus has been studied by the inductively coupled plasma mass spectrometry (ICP-MS) method during cultivation on a liquid nutrient medium with the addition of germanium, selenium, and molybdenum compounds at a concentration of 10, 25, and 50 mg/l, respectively.
Results. All tested strains have shown a high bio-accumulive ability: for germanium, the coefficients of accumulation are within the range from two to three orders of magnitude (404—3577), for selenium, they vary from one to three orders of magnitude (19—2118), and for molybdenum, they range from one to two orders of magnitude (12—162).
Conclusions. The further development and implementation of mushroom supplements enriched with essential elements should include study of the bioavailability and efficacy of the preparations, as well as biomedical and clinical trials.
Keywordsbioaccumulation, culinary-medicinal mushrooms, essential elements, Pleurotus spp.
References
1. Gabriel, J. (Ed.). (2016). Macromycetes: medicinal properties and biological peculiarities. V. 2. Kyiv: Nash format. 261 p. [in Russian]. 
2. Сhaturvedi, V. K., Agarwal, S., Gupta, K. K., Ramteke, P. W., Singh, M. P. (2018). Medicinal mushroom: boon for therapeutic applications. 3 Biotech., 8, 334. 
https://doi.org/10.1007/s13205-018-1358-0
3. Wasser, S. P. (2017). Medicinal Mushrooms in Human Clinical Studies. Part I. Anticancer, Oncoimmunological, and Immunomodulatory Activities: A Review. Int. J. Med. Mushrooms, 19(4), 279-317.
https://doi.org/10.1615/IntJMedMushrooms.v19.i4.10
4. Stajic, M., Milenkovic, I., Brceski, I., Vukojevic, J., Duletic-Lausvevic, S. (2002). Mycelial growth of edible and medicinal oyster mushroom (Pleurotus ostreatus (Jacq.:Fr.) Kumm.) on selenium-enriched media. Int. J. Med. Mushrooms, 4(3), 241-244.
https://doi.org/10.1615/IntJMedMushr.v4.i3.70
5. Grodzinskaya, A. A., Kachalova, N. M. (2003). Perspektivyi biotehnologii gribov v Ukraine. Nauka innov., 1(1), 64-69 [in Russian].
6. Beelman, R. B., Royse, D. J. (2005). Selenium enrichment of Grifola frondosa (Dicks.: Fr.) S.F. Gray (Maitake) Mushrooms. Int. J. Med. Mushrooms, 7(3), 340.
https://doi.org/10.1615/IntJMedMushrooms.v7.i3.51
7. Turło, J., Gutkowska, B., Herold, F. (2010). Effect of selenium enrichment on antioxidant activities and chemical composition of Lentinula edodes (Berk.) Pegl. Mycelia extracts. Food and Chemical Toxicology, 48, 1085-1091.
https://doi.org/10.1016/j.fct.2010.01.030
8. Bhatia, P., Aureli, F., D'Amato, M., Prakash, R., Cameotra, S. S., Nagaraja, T. P., Cubadda, F. (2013). Selenium bioaccessibility and speciation in biofortified Pleurotus mushrooms grown on selenium-rich agricultural residues. Food Chem., 140, 225-230.
https://doi.org/10.1016/j.foodchem.2013.02.054
9. da Silva, M. C. S., Nunes, M. D., da Luz, J. M. R., Kasuya, M. C. M. (2013). Mycelial Growth of Pleurotus spp. in Se-Enriched Culture Media. Advances in Microbiology, 3, 11-18.
https://doi.org/10.4236/aim.2013.38A003
10. Bisko, N. A., Lomberh, M. L., Mytropolska, N. Iu., Mykhailova, O. B. (2016). Kolektsiia kultur shapynkovykh hrybiv (IBK). Kyiv: Alterpres [in Ukrainian].
11. Ponomarenko, O. M., Samchuk, A. I., Krasiuk, O. P., Makarenko, T. I., Antonenko, O. H. (2008). Analitychni skhemy probopidhhotovky hirskykh porid ta mineraliv i vyznachennia v nykh mikroelementiv metodom mas-spektrometrii z induktsiino zviazanoiu plazmoiu (ISP-MS). Mineralohichnyi zhurnal, 4, 97–103 [in Ukrainian].
12. Buchalo, A., Mykchaylova, O., Lomberg, M., Wasser, S. P. (2009). Microstructures of vegetative mycelium of macromycetes in pure сultures. Eds. P. A. Volz and E. Nevo. Kyiv: M.G. Kholodny Institute of Botany.
13. Solomko, E. F., Grodzinskaya, A. A., Paschenko, L. A., Pchelintseva, R. K. (1986). Mineral сomposition of some cultivated and wild Basidiomycete species. Mikologiya i fitopatologiya, 20(6), 474–478 [in Russian].
14. Vetter, J. (1993). Selenium content of some higher fungi. Acta Alimentaria, 22(4), 383–387.
15. Grodzinskaya, A. A., Kotliar, V. Z., Buchalo, A. S. (2001). Influence of mineral elements on the mycelia growth and their uptake by Pleurotus ostreatus (Jacq.: Fr.). Int. J. Med. Mushrooms, 3(2–3), 151.
https://doi.org/10.1615/IntJMedMushr.v3.i2-3.680
16. Baldrian, P., Gabriel, J. (2002). Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiology Letters, 206(1), 69–74. 
https://doi.org/10.1111/j.1574-6968.2002.tb10988.x
17. Kostychev, A. A. (2009). Bioabsorption of Heavy Metals and Arsenic by Agaricoid and Gasteroid Basidiomycetes. PhD (Biol). Moskow [in Russian].
18. Petrini, O., Cocchi, L., Vescovi, L., Petrini, L. (2009). Chemical elements in mushrooms and their potential taxonomic significance. Mycol. Progr., 8(3), 171-180.
https://doi.org/10.1007/s11557-009-0589-1
19. Kalač, P. (2010). Trace element content in European species of wild growing edible mushrooms: A review for the period 2000-2009. Food Chemistry, 122, 2-15.
https://doi.org/10.1016/j.foodchem.2010.02.045
20. Wasser, S. P. (Ed.). (2012). Macromycetes: medicinal properties and biological peculiarities. Kyiv. 285 p. [in Russian].
21. Falandysz, J., Borovička, J. (2013). Macro and trace mineral constituents and radionuclids in mushrooms: health benefits and risks. Appl. Microbiol. Biotechnol., 97(2), 477-501.
https://doi.org/10.1007/s00253-012-4552-8
22. Mleczek, M., Niedzielski, P., Kalač, P., Budka, A., Siwulski, M., M. Gąsecka, M., Rzymski, P., Magdziak, Z., Sobieralski, K. (2016). Multielemental analysis of 20 mushroom species growing near a heavily trafficked road in Poland. Environ. Sci. Pollut. Res., 23, 16280-16295.
https://doi.org/10.1007/s11356-016-6760-8
23. Golubkina, N. A., Mironov, V. E. (2018). Elementnyiy sostav gribov v usloviyah kontrastnyih antropogennyih nagruzok. Geohimiya, 10, 3-16. [in Russian].
https://doi.org/10.1134/S0016752518100084
24. Perepelytsia, O. P. (2004). Ekokhimiia ta endoekolohiia elementiv: Dovidnyk z ekolohichnoho zakhystu. Kyiv. 736 s. [in Ukrainian].
25. Grodzynska, G. A., Samchuk, A. I., Syrchin, S. O. (2010). Mineral elements content in Boletales mushrooms. Visnyk NAN Ukrainy, 6, 29–35 [in Ukrainian].
26. Grodzynska, G. A., Samchuk, A. I., Dudka, I. O. (2015). Bioaccumulation of mineral elements by fruiting bodies of wild macromycetes. Ekolohichnyi visnyk, 92(5), 22–24 [in Ukrainian].