On the Issue of Choice of the Parameter Optimization Method for a Guided Missile

TitleOn the Issue of Choice of the Parameter Optimization Method for a Guided Missile
Publication TypeJournal Article
Year of Publication2020
AuthorsSenkin, VS, Syutkina-Doronina, SV
Short TitleSci. innov.
DOI10.15407/scine16.03.050
Volume16
Issue3
SectionResearch and Engineering Innovative Projects of the National Academy of Sciences of Ukraine
Pagination50-64
LanguageEnglish
Abstract
Introduction. The design of guided missiles is connected with high costs of material and financial resources. The need to reduce them at the initial design phase of guided missiles imposes stringent requirements to formalization of design problems, the solution methods, the adequacy of mathematical models employed and the quality of design solutions.
Problem Statement. One of the design problems for guided missiles is to develop methodology for optimization of design parameters and motion control programs of guided missiles.
Purpose. The aim of the article is to develop methodology to optimization of design parameters and control programs, as well as the formalization of problem and the choice of method to optimize the characteristics of guided missiles capable of flying along different trajectories.
Materials and Methods. Deterministic optimization methods are used to solve the problem of nonlinear mathematical programming with limitations in form of equality, inequality and differential constraints.
Results. The application programs have been developed to solve the optimization problem for single-stage guided missile with solid rocket motors. The developed methodology has been tested by solving design problem of hypothetical guided missile with a starting weight of 300 kg that is capable of flying along a ballistic trajectory for vertical and oblique types of start. The use of the Hooke-Jeeves zero-order pattern search, which does not use the calculation of partial derivatives of the objective function by optimization parameters, which most reduces the search time of the optimal solution of the complex problem, was shown to be expedient.
Conclusion. The developed methodology allows one to determine, to the accuracy required in design studies, the flight control programs optimal in a given class of functions and advisable values of the design parameters and basic characteristics for guided missiles.
Keywordsdesign parameters, guided missile, initial design phase, mathematical model, motion control programs, optimization, solid rocket motors, trajectory parameters
References
1. Degtyarev, A. V. (2014). The problems and prospects of missilery. Dnepropetrovsk: ART-PRESS [in Ukrainian].
2. Mishin, V. P., Bezverbyi, V. K., Pankratov, B. M., Sheverov, D. N. (1985). Basic designing of aerial vehicles. The manual for technical universities. Moscow: Mashinostroenie [in Russian].
3. Shcheverov, D. N. (1978). Designing of unmanned aerial vehicles. Moscow: Mashinostroenie [in Russian].
4. Sinyukov, A. M., Volkov, L. I., L’vov, A. I., Shishkevich, A. M. (1972). The ballistic solid propellant rocket. Moscow: Voenizdat [in Russian].
5. Varfolomeev, V. I., Kopytov, M. I. (1970). Designing and testing of ballistic missiles. Moscow: Voenizdat [in Russian].
6. Vinogradov, V. A., Grushchanskii, V. A., Dovgodush, S. I., Ilichev, A. V. (1989). The efficiency of complex systems. Dynamic models. Moscow: Nauka [in Russian].
7. Ilichev, A. V., Volkov, V. D., Grushchanskii, V. A. (1982). The efficiency of the designed elements of complex systems. Moscow: Vysshaya shkola [in Russian].
8. Krotov, V. F., Gurman, V. I. (1973). The methods and problems of optimal control. Moscow: Nauka [in Russian].
9. Pontryagin, L. S., Boltyanskii, V. G., Gamkrelidze, R. V., Mishchenko, E. F. (1969). The mathematical theory of optimal processes. Moscow: Nauka [in Russian].
10. Tarasov, E. V. (1970). The algorithm of optimal engineering of the rocket. Moscow: Mashinostroenie [in Russian].
11. Alpatov, A. P., Senkin, V. S. (2011). The complex problem of the simultaneous optimization of the basic design parameters and motion control programs of guided missiles. Technical Mechanics, 4, 98–113 [in Ukrainian].
12. Alpatov, A. P., Senkin, V. S. (2013). The methodology for the choice of design and the optimization of the design parameters and control programs of the launch vehicle. Technical Mechanics, 4, 146–161 [in Ukrainian].
13. Senkin, V. S. (2009). The optimization of project parameters of the ultra-light class launch vehicle. Technical Mechanics, 1, 80–88 [in Ukrainian].
14. Aksenenko, A. V., Baranov, E. Yu., Gurskii, A. I., Klochkov, A. S., Morozov, A. S., Alpatov, A. P., Senkin, V. S., Syutkina-Doronina, S. V. (2018). The methodology for the early design phase to optimize design parameters, trajectory parameters and motion control programs for guided missile. Space Technology. Missile Armaments, 2(116), 101–116 [in Ukrainian].
https://doi.org/10.33136/stma2018.02.101
15. Syutkina-Doronina, S. V. (2017). The problem of the optimization the design parameters and control programs of the guided missile with main solid rocket motors. Aerospace technic and technology, 2(137), 44–59 [in Ukrainian].
16. Senkin, V. S. (2012). The complex problem to optimize design parameters and control programs of the super light solid launch vehicle. Technical Mechanics, 2, 106–121 [in Ukrainian].
17. Senkin, V. S. (2018). The problem of the choice of the motion control programs for guided missile capable of flying along the ballistic trajectory. Technical Mechanics, 1, 48–59 [in Ukrainian].
https://doi.org/10.15407/itm2018.01.059
18. Lebedev, A. A., Gerasyuta, N. F. (1970). The ballistics of the rockets. Moscow: Mashinostroenie [in Russian].
19. Razumev, V. F., Kovalev, B. K. (1976). Fundamentals of design of the ballistic solid-propellant rockets. Moscow: Mashinostroenie [in Russian].
20. Erokhin, B. T. (1982). The theoretical Design Basics of solid rocket motors. Moscow: Mashinostroenie [in Russian].
21. Abugov, D. I., Bobylev, V. M. (1987). The theory and calculation of the solid rocket motors. Moscow: Mashinostroenie [in Russian].
22. Shishkov, A. A. (1974). The gas dynamics of gunpowder rocket motors. Moscow: Mashinostroenie [in Russian].
23. Panteleev, A. V., Letova, T. A. (2005). The optimization methods in examples and tasks. Moscow: Vysshaya shkola [in Russian].
24. Senkin, V. S., Syutkina-Doronina, S. V. (2018). The joint use of the random search methods with gradient ones of the optimization of design parameters and control programs of the guided missile. Technical Mechanics, 2, 44–59 [in Ukrainian].
https://doi.org/10.15407/itm2018.02.044
25. Senkin, V. S., Syutkina-Doronina, S. V. (2019). The problem of the choice of optimization methods of design parameters and control programs of the guided missile. Technical Mechanics, 1, 3–17 [in Ukrainian].