"Green" Synthesis of Noble Metal Nanoparticles and CdS Semiconductor Nanocrystals Using Biological Materials

Title"Green" Synthesis of Noble Metal Nanoparticles and CdS Semiconductor Nanocrystals Using Biological Materials
Publication TypeJournal Article
Year of Publication2015
AuthorsBlume, Ya.B, Pirko, Ya.V, Burlaka, OM, Borova, MM, Danylenko, IA, Smertenko, PS, Yemets, AI
Short TitleSci. innov.
SectionOn the 10th Anniversary of the Journal

The basic principles of synthesis of metal nanoparticles and semiconductor nanocrystals as well as the prospects for their application have been discussed. The relevance of living systems and their components for the development of «green» technology for synthesizing nano-objects with unique properties and a wide range of applications has been analyzed. The biotechnological synthesis of silver, gold, and silver-gold bimetallic nanoparticles using plant extracts of Magnolia denudata, M. stellata, Camellia sinensis var. sinensis, C. sinensis var. assamica, Orthosiphon stamineus, and Hypericum perforatum has been described. The results of synthesis of cadmium sulfide fluorescent semiconductor nanocrystals using Escherichia coli bacteria, Pleurotus ostreatus basidiomycete and Linaria maroccana plant have been reported. Morphological and optical characteristics of the synthesized nanoparticles have been described.

Keywordsbimetallic nanoparticles, biological synthesis of nanoparticles, fluorescent nanocrystals of cadmium sulfide, noble metal nanoparticles, phytochemical tanks, semiconductor quantum dot nanoparticles, «green» synthesis of nanoparticles

1. Mohanpuria, P., Rana, N., and Yadav, S.: Biosynthesis of Nanoparticles: Technological Concepts and Future Applications. J. Nanopart. Res., 10, 507-517 (2008).
2. Tam, J.M., Tam, J.O., Murthy, A. et al.: Controlled Assembly of Biodegradable Plasmonic Nanoclusters for Near-Infrared Imaging and Therapeutic Applications. ACS Nano, 4, 2178-2184 (2010).
3. Burlaka, O.M., Pirko, Ya.V., Yemets, A.I., and Blume, Ya. B.: «Green» Synthesis of Metal Nanoparticles: Capacity of Biological Systems and Prospects for Development. Nanostructure Material Science, 4, 89-103 (2012) (in Ukrainian).
4. Sarwat, B.R., Ghaderi, S., Keshtgar, M., and Seifalian, A.M.: Semiconductor Quantum Dots as Fluorescent Probes for In Vitro and In Vivo Bio-Molecular and Cellular Imaging. Nano Rev., 1, 1-15 (2010).
5. Singh, S.H., Bozhilov, K., Mulchandani, A. et al.: Biologically Programmed Synthesis of Core-Shell CdSe/ZnS Nanocrystals. Chem. Commun., 46, 1473-1475 (2010).
6. Michalet, X., Pinaud, F.F., and Bentolila, L.A.: Quantum Dots for Live Cells, In Vivo Imaging, and Diagnostics. Science, 307, 5709, 538—544 (2005).
7. Dahl, J.A., Maddux, B.L.S., and Hutchison, J.E.: Toward Greener Nanosynthesis. Chem. Rev., 107, 2228-2269 (2007).
8. Iravani, S.: Green Synthesis of Metal Nanoparticles Using Plants. Green Chem., 13, 2638-2650 (2011).
9. Krutiakov, Yu.A., Kudrinski, A.A., Olenin, A.Yu., and Lisichkin, G.V.: Synthesis and Properties of Silver Nanoparticles: Achievement and Prospects. Uspekhi Khimii, 77, 3, 242-269 (2008) (in Russian).
10. Darroudi, M., Ahmad, M.B., Zamiri, R. et al.: Time-Dependent Effect in Green Synthesis of Silver Nanoparticles. Int. J. Nanomedicine, 6, 677-681 (2011).
11. Nirmal, M., Dabbousi, B.O., Bawendi, M.G., Brus, L.E. et al.: Fluorescence Intermittency in Single Cadmium Selenide Nanocrystals. Nature, 383, 802-804 (1996).
12. Gaponik, N., Talapin, D.V., Rogach, A.L. et al.: Thiol-Capping of CdTe Nanocrystals: an Alternative to Organometallic Synthetic Routes. J. Phys. Chem., 106, 7177-7185 (2002).
13. Shankar, S.S., Rai, A., Ahmad, A., and Sastry, M.: Rapid Synthesis of Au, Ag, and Bimetallic Au Core—Ag Shell Manoparticles Using Neem (Azadirachta indica) Leaf Broth. J. Coll. Interface Sci., 275, 496-502 (2004).
14. Song, J.Y. and Kim, B.S.: Rapid Biological Synthesis of Silver Nanoparticles Using Plant Leaf Extracts. Bioproc. Biosyst. Eng., 32, 79—84 (2009).
15. Lim, J.-S., Kim, S.-M., Lee, S.-Y. et al.: Formation of Au/Pd Alloy Nanoparticles on TMV. J. Nanomater., 6, 620505-620511 (2010).
16. Nair, B. and Pradeep, T.: Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains. Cryst. Growth. Des., 2, 293-298 (2002).
17. Kannan, N. and Subbalaxmi, S.: Green Synthesis of Silver Nanoparticles Using Bacillus Subtillus IA751 and Its Antimicrobial Activity. Res. J. Nanosci. Nanotechnol., 1, 2, 94-97 (2011).
18. Manonmani, V. and Vimala, J.: Biosynthesis of Ag Nanoparticles for the Detection of Pathogenic Bacteria in Food. 2011 Int. Conf. Innovat., Management Service IPEDR., 14, 311 (2011).
19. Mousavi, R.A, Akhavan, S.A., and Fazeli, M.R.: Biosynthesis, Purification and Characterization of Cadmium Sulfide Nanoparticles Using Enterobacteriaceae and Their Application. Nanomater. Appl. Proper., 1, 1, 1-5 (2012).
20. Dameron, C.T., Reese, R.N., and Mehra, R.K.: Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites. Nature, 338, 13, 596-597 (1989).
21. Ahmad, A., Senapati, S., Khan, M.I. et al.: Intracellular Synthesis of Gold Nanoparticles by a Novel Alkalotolerant Actinomycete, Rhodococcus sp. Nanotechnol., 14, 824 — 828 (2003).
22. Ahmad, A., Senapati, S., Khan, M.I. et al.: Extracellular Biosynthesis of Monodisperse Gold Nanoparticles by a Novel Extremophilic Actinomycete, Thermomonospora sp. Langmuir, 19, 3550-3553 (2003).
23. Bansal, V., Poddar, P., Ahmad, A., and Sastry, M.: Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles. J. Am. Chem. Soc., 128, 11958-11963 (2006).
24. Vigneshwaran, N., Ashtaputre, N.M., Varadarajan, P.V. et al.: Biological Synthesis of Silver Nanoparticles Using the Fungus Aspergillus flavus. Mat. Lett., 61, 1413-1418 (2007).
25. Kumar, S.A., Ayoobul, A.A., Absar, A., and Khan, M.I.: Extracellular Biosynthesis of CdSe Quantum Dots by the Fungus, Fusarium oxysporum. J. Biomed. Nanotechnol., 3, 190-194 (2007).
26. Arjunan, K., Murugan, K., Rejeeth, C. et al.: Green Synthesis of Silver Nanoparticles for the control of Mosquito Vectors of Malaria, Filariasis, and Dengue. Vector Borne Zoonotic Dis., 12, 3, 262-269 (2012).
27. Jayaseelan, C., Rahuman, A.A., Rajakumar, G. et al.: Synthesis of Pediculocidal and Larvicidal Silver Nanoparticles by Leaf Extract from Heartleaf Moonseed Plant, Tinospora cordifolia Miers. Parasitol. Res., 109, 185-194 (2011).
28. Guidelli, E.J., Ramos, A.P., Zaniquelli, M.E.D., and Baffa, O.: Green Synthesis of Colloidal Silver Nanoparticles Using Natural Rubber Latex Extracted from Hevea brasiliensis. Spectrochimica Acta A, 82, 140-145 (2011).
29. Kaviya, S., Santhanalakshmi, J., and Viswanathan, B.: Green Synthesis of Silver Nanoparticles Using Polyalthia longifolia Leaf Extract along with D-sorbitol: Study of Antibacterial Activity. J. Nanotechnol. (2011); http://www.hindawi.com/journals/jnt/2011/152970.
30. Mallikarjuna, K., Narasimha, G., Dillip, G.R. et al.: Green Synthesis of Silver Nanoparticles Using Ocimum Leaf Extract and Characterization. Digest J. Nanomater. Biostruct., 6, 1, 181-186 (2011).
31. Marchiol, L.: Synthesis of Metal Nanoparticles in Living Plants. Italian J. Agron., 7, 3, 274-282 (2012).
32. Anshup, A., Venkataraman, J.S., Subramaniam, C. et al.: Growth of Gold Nanoparticles in Human Cells. Langmuir, 21, 11562-11567 (2005).
33. Satyavani, K., Ramanathan, T., and Gurudeeban, S.: Plant Mediated Synthesis of Biomedical Silver Nanoparticles by Using Leaf Extract of Citrullus colocynthisRes. J. Nanosci. Nanotechnol., 1, 2, 95-101 (2011).
34. Virkutyte, J. and Varma, R.S.: Green Synthesis of Metal Nanoparticles: Biodegradable Polymers and Enzymes in Stabilization and Surface Functionalization. Chem. Sci., 2, 837-846 (2011).
35. Shukla, R., Nune, S.K., Chanda, N. et al.: Soybeans as a Phytochemical Reservoir for the Production and Stabilization of Biocompatible Gold Nanoparticles. Small., 4, 9, 1425-1436 (2008).
36. Mukherjee, P., Senapati, S., Mandal, D. et al.: Extracellular Synthesis of Gold Nanoparticles by the Fungus Fusarium oxysporum. Chem. Bio. Chem., 3, 461-463 (2002).
37. Shahverdi, A., Minaeian, S., Shahverdi, H.R. et al.: Rapid Synthesis of Silver Nanoparticles Using Culture Supernatants of Enterobacteria: a Novel Biological Approach. Proc. Biochem., 42, 919-923 (2007).
38. Xie, J., Lee, J.Y., Wang, D.I.C., and Ting, Y.P.: Silver Nanoplates: from Biological to Biomimetic Synthesis. ACS Nano, 1, 429-439 (2007).
39. Li, S., Shen, Y., Xie, A. et al.: Green Synthesis of Silver Nanoparticles Using Capsicum annuum L. extract. Green Chem., 9, 852-858 (2007).
40. Li, X., Xu, H., Chen, Zh-Sh., and Chen, G.: Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater., 1-16 (2011).
41. Pomogailo, A.D., and Kestelman, V.N. (2005). Metallopolymer Nanocomposites. Springer: Berlin, Heidelberg, New York.
42. He, F., Zhao, D., Liu, J., and Roberts, C.B.: Stabilization of Fe-Pd Bimetallic Nanoparticles with Sodium Carboxymethyl Cellulose for Enhanced Degradation of TCE in Water. Ind. Eng. Chem. Res., 46, 29-34 (2007).
43. Blume, Ya.B., Pirko, Ya.V., Danilenko, I.A. et al.: Technique for Obtaining Silver and Gold Nanoparticles. Patent of Ukraine for Utility Model no. 86778 of 10.01.2014 (in Ukrainian).
44. Pirko, Ya., Danylenko, I., Kolomys, O. et al.: Phytochemical Mediated Synthesis of Silver and Gold Nanoparticles. Curr. Pharm. Biotechnol., 13, 15, 85 (2012).
45. Pirko, Ya., Danylenko, I., Kolomys, O. et al.: Synthesis of Silver Nanoparticles Using Phytoextracts from Higher Plants. Chemistry-2011: 10th Int. Conf. Lithuanian Chemists, 135 (2011).
46. Danilenko, I.A., Botvinko, A.V., Pirko, Ya.V. et al.: Synthesis and Antibacterial Properties of Silver Nanoparticles Synthesized Using Phytoextracts. Nanosize Systems: Structure, Properties, and Technologies, 472 (2013) (in Ukrainian).
47. Borova, M.M., Naumenko, A.P., Pirko, Ya.V., Krupodiorova, T.A., Yemets, A.I., and Blume, Ya.B.: Obtaining CdS Quantum Dots Using Pleurotus ostreatus. Reports of the NAS of Ukraine, 2, 153-159 (2014) (in Ukrainian).
48. Borova, M.M., Naumenko, A.P., Yemets, A.I., and Blume, Ya.B.: Stability of CdS Quantum Dots Synthesized Using Escherichia coli Bacterium. Reports of the NAS of Ukraine, 7, 145-151 (2014) (in Ukrainian).
49. Borovaya, M.N., Naumenko, A.P., Matvieieva, N.A. et al.: Biosynthesis of Luminescent CdS Quantum Dots Using Plant Hairy Root Culture. Nanoscale Res. Lett., 9 (2014).
50. Martínez-Castañón, G.A, Loyola-Rodríguez, J.P, and Reyes-Macías, J.F.: Synthesis and Optical Properties of Functionalized CdS Nanoparticles with Different Sizes. Superficies y vacío, 23, 4, 1-4 (2010).
51. Asaula, V.N., Mirnaia, T.A., and Yaremchuk, G.G.: Nanostructured Liquid Crystal Systems of Metal Alcanoates with CdS Nanoparticles. Nanosystems, Nanomaterials, and Nanotechnologies, 10, 1, 193-201 (2012) (in Russian).
52. Rossetti, R, Ellison, J.L, Gibson, J.M, and Brus, L.E.: Size Effects in the Excited Electronic States of Small Colloidal CdS Crystallites. J. Chem. Phys., 80, 9, 4464-4469 (1984).
53. Sweeney, R.Y., Mao, C., and Gao, X.: Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. Chem. Biol., 11, 11, 1553-1559 (2004).